RHIC Status and Plans

Brief summary of RHIC RUN2001/2

Plans and goals for RUN2003

FY2001 - 02 RHIC Gold Parameters

- 55 56 bunches per ring ✓ (110 bunches per ring tested, intensity limited)
- 7.5×10^8 Au/bunch @ storage energy (intensity limited during acceleration)
- 1 × 10⁹ Au/bunch achieved @ injection ✓
- Longitudinal emittance: 0.5 eVs/nucleon/bunch (0.3-0.6 Design) ✓
- Transverse emittance at storage: 15 π μ m (norm, 95%) \checkmark
- Storage energy: 100 GeV/ amu $(\gamma = 107.4) \checkmark 10$ GeV / amu $(\gamma = 10.5) \checkmark$
- Lattice with β^* squeeze during acceleration ramp:
 - β^* = 3 m and 10m @ all IP at injection \checkmark
 - β^* = 1 m @ 8 and 2 m @ 2, 6 and 10 o'clock at storage \checkmark
- Peak Luminosity: 5×10^{26} cm⁻² s⁻¹ (2.5 × design average) \checkmark
- Bunch length: 5ns (200 Mhz operational, diamond length: $\sigma = 20$ cm) \checkmark

Au Injector Performance (needs update)

Au³²⁺: 1.4(1.1) part. μ A, 530 μ s (40 Booster turns)

RHIC performance

- Collisions at RHIC design beam energy (100 GeV/nucl)
- 200 MHz rf system operational
 - > 5 ns bunch length and an interaction region with $\sigma \sim 25$ cm
- Luminosity exceeding RHIC design luminosity of 2×10^{26} cm⁻² s⁻¹
- 40% availability is limiting total integrated luminosity

"Typical Store" # 1812

Integrated Au-Au luminosity

x 10⁶ Au

RHIC PERFORMANCE

RHIC Au commissioning and challenges

- Single- and multi-bunch instabilities
 - Effect of vacuum chamber impedance, electron cloud (?)
- Intensity limitation for gold (?) due to vacuum break-down
 - Limited to about 40×10^9 Au/ring
 - o Electron cloud? Ion or electron desorbtion?
- Intra-Beam Scattering (IBS)
 - Transverse and longitudinal emittance growth
 - Eventually will need electron cooling (see below)
- Beam-beam tune shift and spread
 - First strong-strong hadron collider (after ISR)

Transverse instabilities in RHIC

Polarized proton collisions in RHIC

High intensity polarized H source

KEK OPPIS upgraded at TRIUMF

70 - 80 % Polarization

15×10¹¹ protons/pulse at source

6×10¹¹ protons/pulse at end of LINAC

Proton polarization at the AGS

- Full spin flip at all imperfection resonances using partial Siberian snake
- Full spin flip at strong intrinsic resonances using rf dipole
- Remaining polarization loss from coupling and weak intrinsic resonances
- Larger polarization loss in FY2002 due to lower ramp-rate motor-generator and higher bunch intensity (?)

First Siberian Snake in RHIC Tunnel

Siberian Snake: 4 superconducting helical dipoles, 4Tesla, 2.4 m long with full 360° twist

Funded by RIKEN, Japan Designed and constructed at BNL

"Typical Store" # 2304

Beam currents [\times 10⁶ ions]

Collision rate [Hz]

Vernier scans:

STAR: $10^4 \rightarrow 0.6 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

PHENIX: $10^4 \rightarrow 1.6 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

PHENIX

PHOBOS

Integrated p - p luminosity

STAR during last 20 days: 290 (nb)-1/week

 $L_{ave}(week) = 0.5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{ave}(week)/L_{ave}(store) = 42 \%$

Results from first RHIC polarized proton run

- 55 bunches per ring with $0.8 \times 10^{11} \,\mathrm{p}^{\uparrow}/\mathrm{bunch}$
- Charge/bunch and total charge higher than with gold beams
- Lattice with constant β * of 3 m during ramp
- Peak luminosity at beginning of store: 1.5×10^{30} cm⁻² s⁻¹
- Energy/beam: 100 GeV
- Beam polarization ~ 25 %
 RHIC polarimeters work reliably
- Little if any depolarization in RHIC during acceleration and store **Siberian Snakes work**
- $\bullet \sim 60$ % polarization loss in AGS; aggravated by lower ramp-rate from Westinghouse motor-generator
- \bullet Strong Siberian snake in AGS (~ 30 % of full snake) could avoid all depolarization in the AGS

C-A Operation FY2001-02

C-A Operation FY2003-04

RUN2003 Goals (~ 3-4 weeks into run)

• Prepare for four modes; all with:

Energy/beam: 100 GeV/nucl., diamond length: $\sigma = 20$ cm, $L_{ave}(week)/L_{ave}(store) = 40 \%$

Mode	# bunches	Ions/bunch [×10 ⁹]	β* [m]	Emittance [πμm]	L _{peak} [cm ⁻² s ⁻¹]	L _{ave} (store) [cm ⁻² s ⁻¹]	L _{ave} (week) [week ⁻¹]
Au-Au	56	1	1	15-40	14×10^{26}	3×10 ²⁶	70 (μb) ⁻¹
(p↑-p↑)*	112	100	1	25	16×10 ³⁰	10×10 ³⁰	2.8(pb) ⁻¹
d-Au	56	100(d), 1(Au)	2	20	5×10 ²⁸	2×10 ²⁸	5 (nb) ⁻¹
Si-Si	56	7	1	20	5×10 ²⁸	2×10 ²⁸	5 (nb) ⁻¹

^{*} Beam polarization ≥ 50 %; Acceleration test to 250 GeV

- New hardware installed and to be commissioned:
 - All eight spin rotators for PHENIX and STAR

RUN2003 Integrated Luminosity Estimate

Estimate for integrated luminosity for 29 week FY2003 run:

• 4 weeks cool down, 1 week warm-up, 2 weeks setup (for each mode),

3 weeks ramp up (for each mode): \rightarrow

29 weeks of cryo ops.: 2 modes: 7 weeks at "final" luminosity / mode

3 modes: 3 weeks at "final" luminosity / mode

4 modes: 1 week at "final" luminosity / mode

• Minimum: performance at end of FY2001/02 run

• Maximum: luminosities from previous slide

Mode	L _{ave} (week) [week ⁻¹]	Int. Lumi. 2 modes	Int. Lumi. 3 modes	L _{ave} (week) [week ⁻¹]	Int. Lumi. 2 modes	Int. Lumi. 3 modes
Au-Au	24(μb) ⁻¹	168(μb) ⁻¹	72(μb) ⁻¹	70 (μb) ⁻¹	490(μb) ⁻¹	210(μb) ⁻¹
(p↑-p↑)*	0.3(pb) ⁻¹	2.1(pb) ⁻¹	0.9(pb) ⁻¹	2.8(pb) ⁻¹	19.6(pb) ⁻¹	8.4(pb) ⁻¹
d-Au	?	?	?	5 (nb) ⁻¹	35 (nb) ⁻¹	15 (nb) ⁻¹
Si-Si	?	?	?	5 (nb) ⁻¹	35 (nb) ⁻¹	15 (nb) ⁻¹

HERA and **LEP** luminosity

